Chapter 1 Basics of Geometry

Section 5 Segment and Angle Bisectors

The __midpoint__ of a segment is the point that divides, or __bisects__, the segment into two congruent segments. In this book, matched red *congruence marks* identify congruent segments in diagrams.

A __segment bisector__ is a segment, ray, line, or plane that intersects a segment at its midpoint.

M is the midpoint of \overline{AB} if M is on \overline{AB} and AM = MB.

You can use a compass and a straightedge (a ruler without marks) to construct a segment bisector and midpoint of AB. A construction is a geometric drawing that uses a limited set of tools, usually a compass and a straightedge.

If you know the coordinates of the endpoints of a segment, you can calculate the coordinates of the midpoint. You simply take the mean, or average, of the x-coordinates and of the y-coordinates. This methods is summarized as the Midpoint Formula.

The Midpoint Formula

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the midpoint of AB has coordinates

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

Example 1: Finding the Coordinates of the Midpoint of a Segment

Find the coordinates of the midpoint of AB with endpoints

$$A(-2, 3)$$
 and $B(5, -2)$.

$$\left(\frac{-2+5}{2}, \frac{3+-2}{2}\right)$$

Example 2: Finding the Coordinates of an Endpoint of a Segment

TFST

The midpoint of \overline{RP} is M(2, 4). One endpoint is $\overline{R(-1, 7)}$. Find the coordinates of the other endpoint.

$$\left(\begin{array}{c} x + -1 \\ 2 \end{array}\right) - \left(\begin{array}{c} 2 \\ 1 \end{array}\right)$$

$$2 \times \frac{x + -1}{2} = 2 \times 2$$

$$2 \times \frac{x + -1}{2} = 2 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$2 \times \frac{x + -1}{2} = 4 \times 2$$

$$3 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} = 4 \times 2$$

$$4 \times \frac{x + -1}{2} =$$

GOAL 2: Bisecting an Angle

An angle bisector is a ray that divides an angle into two adjacent angles that are congruent. In the diagram at the right, the ray CD bisects <ABC because it divides the angle into two congruent angles, <ACD and <BCD.

In this book, matching *congruence arcs* identify congruent angles in diagrams.

Example 3: Dividing an Angle Measure in Half

The ray \overrightarrow{FH} bisects the angle <EFG. Given that m<EFG = 120°, what are the measures of <EFH and <HFG?

$$120/2 = 60$$

$$m < EFH = 60*$$

$$m < HFG = 60*$$

Example 4: Doubling an Angle Measure

In the kite, two angles are bisected.

<EKI is bisected by KT.

<ITE is bisected by TK.

Find the measure of the two angles.

$$m < EKI = 90*$$
 (45 + 45)

$$m < ETI = 54*$$
 (27 + 27)

Example 5: Finding the Measure of an Angle

In the diagram, RQ bisect <PRS. The measures of the two congruent angles are $(x + 40)^{\circ}$ and $(3x - 20)^{\circ}$. Solve for x.

$$\begin{array}{c} x + 40 = 3x - 20 \\ -x & -x \\ 40 = 2x - 20 \\ +20 & +20 \end{array}$$

$$\begin{array}{c} 60 = 2x \\ \hline 2 & -20 \\ \hline 2 & -20$$

