Chapter 1

Basics of Geometry

Section 5

Segment and Angle Bisectors

The __midpoint __ of a segment is the point that divides, or __bisects \qquad , the segment into two congruent segments. In this book, matched red congruence marks identify congruent segments in diagrams.

A __segment bisector \qquad is a segment, ray, line, or plane that intersects a segment at its midpoint.

M is the midpoint of $\overline{A B}$ if M is on $\overline{A B}$ and $A M=M B$.

You can use a compass and a straightedge (a ruler without marks) to construct a segment bisector and midpoint of $\overline{A B}$. A construction is a geometric drawing that uses a limited set of tools, usually a compass and a straightedge.

If you know the coordinates of the endpoints of a segment, you can calculate the coordinates of the midpoint. You simply take the mean, or average, of the x-coordinates and of the y-coordinates. This methods is summarized as the Midpoint Formula.

The Midpoint Formula

If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the midpoint of AB has coordinates

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Example 1: Finding the Coordinates of the Midpoint of a Segment

Find the coordinates of the midpoint of $A B$ with endpoints

$$
\begin{aligned}
& A(-2,3) \text { and } B(5,-2) . \\
& \left(\frac{-2+5}{2}, \frac{3+-2}{2}\right)^{2} \\
& \left(\frac{3}{2}, \frac{1}{2}\right) \\
& (1.5, .5)
\end{aligned}
$$

Example 2: Finding the Coordinates of an Endpoint of a Segment
TEST

The midpoint of $\overline{R P}$ is $M(2,4)$. One endpoint is $R(-1,7)$. Find the coordinates of the other endpoint.

$$
\begin{gathered}
\left(\frac{x+-1}{2}, \frac{y+7}{2}\right)=(2,4) \\
2 \times \frac{x+-1}{2}=2 \times 2 \\
x-x=4+\frac{y+7}{2}=4 \times 2 \\
x=5+y+x=8 \\
(5,1)
\end{gathered}
$$

GOAL 2: Bisecting an Angle

An angle bisector is a ray that divides an angle into two adjacent angles that are congruent. In the diagram at the right, the ray $C D$ bisects $<A B C$ because it divides the angle into two congruent angles, <ACD and $\angle B C D$.

In this book, matching congruence arcs identify congruent angles in diagrams.

Example 3: Dividing an Angle Measure in Half

The ray $\overrightarrow{\mathrm{FH}}$ bisects the angle <EFG. Given that $m<E F G=120^{\circ}$, what are the measures of <EFH and <HFG?

$$
\begin{aligned}
& 120 / 2=60 \\
& m<E F H=60^{*} \\
& m<H F G=60^{*}
\end{aligned}
$$

Example 4: Doubling an Angle Measure

In the kite, two angles are bisected.
<EKI is bisected by KT.
<ITE is bisected by TK.
Find the measure of the two angles.

$$
\begin{array}{ll}
m<E K I=90^{*} & (45+45) \\
m<E T I=54^{*} & (27+27)
\end{array}
$$

Example 5: Finding the Measure of an Angle

In the diagram, RQ bisect <PRS. The measures of the two congruent angles are $(x+40)^{\circ}$ and $(3 x-20)^{\circ}$. Solve for x.

$$
\begin{aligned}
x+40 & =3 x-20 \\
-x x & -x \\
40 & =2 x-20 \\
+20 & +20 \\
\frac{60}{2} & =\frac{4 x}{2} \\
30 & =x
\end{aligned}
$$

